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Abstract. We investigate in detail the quantum fluctuations in the quantum holographic teleportation pro-
tocol that we recently proposed [11]. This protocol implements a continuous variable teleportation scheme
that enables the transfer of the quantum state of spatially multimode electromagnetic fields, preserving
their quantum correlations in space-time, and can be used to perform teleportation of 2D optical images.
We derive a characteristic functional, which provides any arbitrary spatio-temporal correlation function of
the teleported field, and calculate the fidelity of the teleportation scheme for multimode Gaussian input
states. We show that for multimode light fields one has to distinguish between a global and a reduced
fidelity. While the global fidelity tends to vanish for teleportation of fields with many degrees of freedom,
the reduced fidelity can be made close to unity by choosing properly the number of essential degrees of
freedom and the spatial bandwidth of the EPR beams used in the teleportation scheme.

PACS. 03.67.-a Quantum information – 03.65.Bz Foundations, theory of measurement, miscellaneous the-
ories (including Aharonov-Bohm effect, Bell inequalities, Berry’s phase) – 42.50.Dv Nonclassical states of
the electromagnetic field, including entangled photon states; quantum state engineering and measurements

1 Introduction

It is well-known that, by following the principles of quan-
tum physics, it is possible to transport an arbitrary quan-
tum state of the electromagnetic field from one place to
another using a classical information exchange in combi-
nation with a quantum channel which exploits quantum
entangled states. This operation, named quantum tele-
portation, was initially proposed for discrete variables [1]
and later extended to continuous-variable schemes [2,3].
Experimental demonstrations for discrete variables were
achieved in [4] for single-photon polarization states, and
in [5] for continuous variables. In a recent experiment [6]
the continuous-variable teleportation scheme of [5] was
further improved. Apart from its intrinsic fundamental
relevance, the interest towards quantum teleportation also
arises from its potential applications in the fields of quan-
tum error correction [7], quantum dense coding [8] and
quantum cryptography [9].

The theoretical literature on teleportation considers
the case of single-mode fields or, at most, broadband tele-
portation of time-dependent signals [10]. However, the
spatial degrees of freedom offer the opportunity of increas-
ing the number of channels in which teleportation can be
realized in parallel. Recently [11] we proposed a proto-
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col to teleport a spatially multimode state of the field.
Such a teleportation scheme has a far greater potential
as compared to a single-mode case because it enables the
simultaneous teleportation of two-dimensional optical im-
ages or other two-dimensional data sets. This generalized
teleportation scheme opens new potential applications of
teleportation for two-dimensional parallel quantum com-
puting, parallel dense coding, error correction.

While at first sight our teleportation scheme seems to
be very similar to its single-mode counterpart, the detailed
analysis shows that it has several original features which
are not present in the single-mode scheme. The most strik-
ing difference between the two schemes is the possibility
of controlling the performances of the holographic telepor-
tation by optical elements properly inserted into the light
beam paths. This possibility of optical control is related
to the phenomenon of diffraction which is absent for the
single-mode light fields. As it was already outlined in [11],
another peculiar feature of the multimode teleportation
schemes is the need of using a coarse-grained description
of the input and output signals in order to characterize
the quality of the teleportation.

In this paper we investigate in detail the quantum
noise statistics of the output field in the holographic tele-
portation protocol proposed in [11], and formulate cri-
teria for achieving a high fidelity of the quantum state
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teleportation. The statistics of the excess noise introduced
by the teleportation scheme was described in [11]. The
quality of the protocol was there assessed by formulating
criteria which ensured that the excess noise was as small
as possible. However, no quantitative evaluation of the fi-
delity of the quantum state transfer was given there. In
this paper, we explicitly derive the statistics of the excess
noise from a characteristic functional, both in a continu-
ous and in a coarse-grained description of the space-time
features of the light fields. The introduction of the char-
acteristic function of the excess noise allows us to calcu-
late the Wigner function of the teleported field from the
Wigner function of the input field. In the case of multi-
mode Gaussian states in the input, we are then able to
derive an explicit formula for the fidelity of the multi-
mode teleportation process. It turns out that the fidelity
not only depends on the features of the quantum noise in
each mode of the input state, and on the degree of EPR
correlation in the quantum channel (which would be true
also in the case of single-mode teleportation), but it also
depends on the number and choice of image elements or
pixels that one wants to teleport in parallel. We will show
that, for a large number of degrees of freedom in the input
signal, the fidelity of teleportation of the quantum state of
the global system tends to be very close to zero. One has to
define, therefore, a reduced fidelity of teleportation related
to the essential degrees of freedom to be teleported. Such
a reduced fidelity can be made close to unity by a proper
choice of the spatial bandwidth of the EPR beams used
in the protocol as well as by optimization of the scheme
with optical devices (lenses) properly inserted in the light
beams.

Our investigation allows us to conclude that, in gen-
eral, the multipixel observables are more sensitive to the
lack of entanglement in the quantum channel than the
observables for a single pixel.

The paper is organized as follows: in Section 2 we re-
view in more detail the optical scheme of holographic tele-
portation introduced in [11]. We explain how to create the
multimode EPR beams which are an essential part of the
teleportation protocol and we provide a physical interpre-
tation of the local spatio-temporal entanglement created
by such beams. Section 3 investigates the quantum noise
and the spatio-temporal correlation of the teleported op-
tical field. In particular, we derive the characteristic func-
tional describing the statistic of the excess noise intro-
duced by the teleportation protocol, which allows us to
evaluate an arbitrary spatio-temporal correlation function
at the output of the scheme. This derivation is performed
both in a continuous (Sect. 3.1) and in a coarse-grained
(Sect. 3.2) description of the field variables. The second
kind of description will turn out to be necessary for quan-
titative characterization of the teleportation fidelity. In
Section 4 we derive the Wigner function of the output
state, and we calculate the fidelity of the teleportation
protocol in the case of Gaussian field statistics in the in-
put. We introduce the concepts of the global and reduced
fidelity, and of fidelity per mode, which must be used in
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Fig. 1. Scheme of holographic teleportation.

order to characterize the quality of holographic teleporta-
tion. We make our conclusions in Section 5.

2 Optical scheme for quantum holographic
teleportation

The scheme is similar to that proposed and realized in [3,5]
and it is shown in Figure 1. The input light field to be
teleported from Alice to Bob is described by the field op-
erator Ain(�ρ, t), where �ρ is the 2D transverse coordinate
in a cross-section of the beam.

Two quadrature components of the light field are de-
tected “point-by-point” by two homodyne detectors Dx

and Dy formed by high-efficiency multipixel photodetec-
tion matrices (CCD). The spatio-temporal quantum fluc-
tuations of these quadrature components are locally im-
printed into the photocurrents Ix(�ρ, t) and Iy(�ρ, t) at the
output of each pixel of the CCD cameras. These photocur-
rents are sent from Alice to Bob via two multichannel
parallel classical communication lines. Bob uses these pho-
tocurrents for reconstruction of the field Aout(�ρ, t) via two
multichannel modulators Mx and My which modulate in
space and time the relevant quadrature components of an
incoming plane coherent light wave. The essential part
of the teleportation scheme is a pair of broadband en-
tangled Einstein-Podolsky-Rosen (EPR) light beams. Due
to the multimode nature of entanglement our scheme en-
ables the parallel teleportation of N elements of the in-
put wavefront, preserving their space-time correlations.
We demonstrated in [11] that this number is given by the
ratio of the beam cross-section to the coherence area of the
light created by the OPA(s). In the previous teleportation
schemes [3,5] N = 1.

In our teleportation protocol the multimode EPR
beams En(�ρ, t), n = 1, 2, are generated by interfer-
ence mixing at a 50:50 beam splitter BS1 of two broad-
band multimode squeezed beams Sm(�ρ, t), created by
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two degenerate traveling-wave OPAs [12–14], as shown
in Figure 1. This scheme of generation of the spatially-
multimode EPR entanglement is a generalization of the
scheme, previously used [5] for the generation of entan-
glement, which is broadband in time, but single-mode in
space. Alternatively, the two multimode EPR beams can
be generated by a single traveling-wave OPA, degener-
ate in frequency, with type-II phase matching [15,16]; in
the latter case the two beams have orthogonal polariza-
tions. Below we describe the properties of the broadband
multimode squeezing that determine the degree and the
spatio-temporal scales of the resulting entanglement.

Homodyne detection of light produced by travelling
wave OPA’s can be not straightforward to perform, due to
the difficulty of matching the temporal and spatial phase
profile of the down-converted beam with a local oscilla-
tor [17]. A possible solution is to insert the crystal in
a resonant cavity. However, in the typical case, the cav-
ity acts as a spatial filter that selects a single transverse
mode. An interesting proposal is that of using a confo-
cal optical parametric oscillator [18,19]. Here, thanks to
the high mode degeneracy, a good level of squeezing can
be achieved in arbitrary small regions of the beam cross-
section, at least in the ideal case of [18]. If the finite length
of the down-conversion crystal is taken into account, how-
ever, it is readily seen that the size of the regions where
good squeezing is achieved is again limited by the crystal
coherence area [20].

We shall use the space- and time-dependent photon
annihilation and creation operators Sn(�ρ, t) and S†

n(�ρ, t),
n = 1, 2, of the squeezed fields. These operators obey [13]
the free-field commutation relations,[

Sn(�ρ, t), S†
n′(�ρ ′, t′)

]
= δn,n′δ(�ρ− �ρ ′)δ(t− t′),

[Sn(�ρ, t), Sn′(�ρ ′, t′)] = 0, (2.1)

and are normalized so that 〈S†
n(�ρ, t)Sn(�ρ, t)〉 gives the

mean value of the irradiance, expressed in photons per
cm2 per second.

The light waves Sm(�ρ, t) in the broadband multimode
squeezed state are created by two traveling-wave optical
parametric amplifiers OPA1 and OPA2. The transforma-
tion of the input fields Am(�ρ, t) of the OPAs in the vacuum
state into the output fields Sm(�ρ, t) in the broadband mul-
timode squeezed state is described in terms of the Fourier
components of these operators in frequency and spatial-
frequency domain,

sm(�q,Ω) =
∫
d�ρ dt exp[i(Ωt− �q · �ρ )]Sm(�ρ, t). (2.2)

In what follows we shall use similar notation for am(�q,Ω)
and other field operators. The squeezing transformation
performed by the OPAs, can be written as follows:

sm(�q,Ω) = Um(�q,Ω)am(�q,Ω) + Vm(�q,Ω)a†m(−�q,−Ω),
(2.3)

where the coefficients Um(�q,Ω) and Vm(�q,Ω) depend on
the pump-field amplitudes of the OPAs, their nonlinear

susceptibilities and the phase-matching conditions. Here
the conditions

|Um(�q,Ω)|2 − |Vm(�q,Ω)|2 = 1,
Um(�q,Ω)Vm(−�q,−Ω) = Um(−�q,−Ω)Vm(�q,Ω), (2.4)

are necessary and sufficient for preservation of the free-
field commutation relations (2.1). The spatial and tem-
poral scales of the squeezed and entangled light fields es-
sentially depend on the orientation angle ψm(�q,Ω) of the
major axes of the squeezing ellipses,

ψm(�q,Ω) =
1
2

arg {Um(�q,Ω)Vm(−�q,−Ω)} , (2.5)

and on the degree of squeezing rm(�q,Ω),

e±rm(�q,Ω) = |Um(�q,Ω)| ± |Vm(�q,Ω)|. (2.6)

The phase of the amplified quadrature components of the
OPAs input fields is given [21] by

φm(�q,Ω) = −1
2

arg {Um(�q,Ω)V ∗
m(−�q,−Ω)} . (2.7)

In analogy to the single-mode EPR beams, the multimode
EPR beams are created if squeezing in both channels is
effective, and the squeezing ellipses are oriented in the or-
thogonal directions. For simplicity, we assume that OPA1

and OPA2 have such properties that

U1(�q,Ω) = U2(�q,Ω) ≡ U(�q,Ω),
V1(�q,Ω) = −V2(�q,Ω) ≡ V (�q,Ω). (2.8)

These assumptions provide

r1(�q,Ω) = r2(�q,Ω) ≡ r(�q,Ω),
ψ1(�q,Ω) = ψ2(�q,Ω) ± π/2 ≡ ψ(�q,Ω), (2.9)
φ1(�q,Ω) = φ2(�q,Ω) ± π/2 ≡ φ(�q,Ω). (2.10)

For type-I traveling-wave OPAs, the coefficients U(�q,Ω)
and V (�q,Ω) are given by [12,22]

U(�q,Ω) = exp
{
i
[
(kz(�q,Ω) − k)l − δ(�q,Ω)/2

]}
×
[
coshΓ (�q,Ω) +

iδ(�q,Ω)
2Γ (�q,Ω)

sinhΓ (�q,Ω)
]
,

V (�q,Ω) = exp
{
i
[
(kz(�q,Ω) − k)l − δ(�q,Ω)/2

]}
× g

Γ (�q,Ω)
sinhΓ (�q,Ω). (2.11)

Here l is the length of the nonlinear crystal, kz(�q,Ω) is the
longitudinal component of the wave vector �k(�q,Ω) for the
wave with frequency ω + Ω and transverse component �q.
The dimensionless mismatch function δ(�q,Ω) is given by

δ(�q,Ω) =
(
kz(�q,Ω) + kz(−�q,−Ω) − kp

)
l

≈ (2k − kp)l + k′′ΩlΩ
2 − q2l/k, (2.12)
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Fig. 2. The squeezing ellipses for the broadband in space-
time fields S1(�ρ, t) (a) and S2(�ρ, t) (b) in dependence on the
mismatch δ(�q, Ω) (arbitrary units). The type-I collinear de-
generate phase matching, exp[r(0, 0)] = 3. Figures (c) and (d)
show the same squeezing ellipses for the imaging system with
a properly inserted lens.

where kp is the wave number of the pump wave, kp−2k = 0
in the degenerate case. We have assumed here the paraxial
approximation. The parameter Γ (�q,Ω) is defined as

Γ (�q,Ω) =
√
g2 − δ2(�q,Ω)/4, (2.13)

where g is the dimensionless coupling strength of nonlinear
interaction, taken real for simplicity. It is proportional to
the nonlinear susceptibility, the length of the crystal, and
the amplitude of the pump field.

By assuming frequency degenerate and collinear phase-
matching condition, when r(0, 0) = g, one can evaluate the
temporal and spatial frequency bandwidths Ωs and qs of
effective squeezing (see estimates in Sect. IV.D of [13]):

Ωs = 4

√
1

|k′′Ω|l
g

exp[r(0, 0)]
, qs = 4

√
k

l

g

exp[r(0, 0)]
.

(2.14)
The spatio-temporal scales of squeezing and entanglement
are sensitive to the rotation of the squeezing ellipses in the
(x, y)-plane of complex field amplitude with frequencies
�q,Ω, i.e. to the frequency dispersion of squeezing. As a re-
sult of the rotation, the noise suppression in the given field
quadrature goes over to the noise amplification at higher
frequencies, as shown in Figures 2a and 2b. This rotation
in dependence of the spatial frequency can be effectively
eliminated by a properly inserted lens imaging system, see
Figures 2c and 2d. The optical control of the spatial scales
of squeezing and entanglement will be discussed in more
detail in Section 3.

E2
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Fig. 3. Generation of the EPR fields E1(�ρ, t) and E2(�ρ, t),
locally entangled in space-time, via interference of the illumi-
nating squeezed fields S1(�ρ, t) and S2(�ρ, t).

The EPR beams En(�ρ, t), n = 1, 2, can be created by
the interference mixing at the 50:50 beam splitter:

En(�ρ, t) =
∑

m=1,2

RnmSm(�ρ, t). (2.15)

Here

{Rnm} =
1√
2

(
1 1

−1 1

)
, (2.16)

is the scattering matrix of the beam splitter. The physical
properties of the generated entanglement are illustrated
in Figure 3. Consider the corresponding coherence vol-
umes Vc = cTcSc in two incident squeezed beams. Here
Tc = 2π/Ωc and Sc = (2π/qc)2 are respectively the coher-
ence time and the coherence area, related to the temporal
and spatial frequency bandwidths Ωc and qc of effective
noise suppression in the low-noise quadratures. If the fre-
quency and spatial frequency dispersion of squeezing is
corrected, one can assume Ωc ∝ Ωs, qc ∝ qs. The left and
right lower ellipses in Figure 3 and vectors inside represent
the effective local values of the broadband field fluctua-
tions in these coherence volumes. The vectors represent
only the stretched (amplified) quadrature amplitudes of
the fields S1 and S2. The squeezed quadrature amplitudes
are negligible for exp[r(0, 0] � 1 and are not shown. After
the scattering, the outgoing fields E1 and E2 in the cor-
responding coherence volumes are composed of the same
amplified quadrature amplitudes, see left and right upper
plots. This means (in the limit of effective squeezing) the
effective correlation and entanglement between the scat-
tered fields: the quadrature amplitudes of the fields E1

and E2 coincide (up to the sign, introduced by the unitary
transform Eq. (2.16)). In the spatio-temporal domain the
entanglement between the broadband fields is local, “vol-
ume to volume”. In frequency domain the EPR fields are
entangled for the frequencies Ω and spatial frequencies �q
within the phase matching of the OPA.



A. Gatti et al.: Quantum fluctuations in holographic teleportation of optical images 127

3 Quantum statistics of the teleported field

In order to detect two quadrature components of the in-
put field Ain(�ρ, t), this field is splitted at the 50:50 beam
splitter BS2. We shall assume that the scattering matrix
of this beam splitter is given by equation (2.16). Another
input port of the beamsplitter is illuminated by the EPR
beam E1(�ρ, t). In absence of the EPR beam, which is an
essential part of the teleportation scheme, this input port
would be illuminated by a broadband in space-time flux
of vacuum fluctuations. Thus, the input fields of the bal-
anced homodyne detectors Dx and Dy, used for detection
of the x and y field quadratures, read

Bx,y(�ρ, t) =
1√
2

(± Ain(�ρ, t) + E1(�ρ, t)
)
, (3.1)

with the +(−) sign corresponding to x(y). These fields
in turn are mixed with the local oscillator fields LOx

and LOy having complex amplitudes B
(H)
x = B0 and

B
(H)
y = iB0, where B0 is real. For parallel teleportation of

the local spatio-temporal quantum correlations of the in-
put field, we have first to measure those correlations with
spatio-temporal resolution. Temporal resolution can be
achieved by choosing properly the frequency bandwidth of
a photodetector. In order to resolve spatially the quantum
fluctuations we have to use multipixel arrays of photode-
tectors (like CCD cameras) with pixel size much smaller
than the typical spatial scale of quantum correlations. For
the case of homodyne detection of spatially single-mode
quantum fields, the time-dependent difference photocur-
rent operators were considered in [23] and, in more general
case, in [24]. In the Appendix we shall demonstrate [see
Eq. (A.2)] that the difference photocurrent density oper-
ators in the balanced homodyne measurement with spa-
tial resolution, performed by Dx and Dy, are expressed
through the field operators at the surface of the detectors
in analogy to the observables for detection without spatial
resolution, formerly investigated by [23,24]

Ix(�ρ, t) = B0

[
Bx(�ρ, t) +B†

x(�ρ, t)
]
,

Iy(�ρ, t) = B0
1
i

[
By(�ρ, t) −B†

y(�ρ, t)
]
. (3.2)

In particular, these equations provide a correct expression
for the spatio-temporal shot noise in the balanced homo-
dyne detection scheme.

The photocurrent densities Ix(�ρ, t) and Iy(�ρ, t) are sent
from Alice to Bob via two multichannel classical commu-
nication lines. These signals are used by Bob for the inde-
pendent local modulation of two quadrature components
of an external coherent wave, both phase-matched with
the relevant quadratures of the EPR fields [2,3,5]. In the
modulated beam the field component ∝ Ix(�ρ, t)− iIy(�ρ, t)
is created. The teleported field Aout(�ρ, t) is obtained by
interference mixing at the mirror M with high reflectivity
of the modulated field with the second EPR beam E2 (see
Fig. 1),

Aout(�ρ, t) = E2(�ρ, t) + gc

(
Ix(�ρ, t) − iIy(�ρ, t)

)
. (3.3)

Here gc is the coupling constant which takes into ac-
count the efficiency of modulation and the transmission
of the mirror M. Efficient teleportation takes place when
gcB0

√
2 = 1. For a perfect balancing of the mirror re-

flectivity and modulation gain, as described in [3], the
teleported field Aout(�ρ, t) takes the form:

Aout(�ρ, t) = Ain(�ρ, t) + F (�ρ, t), (3.4)

where
F (�ρ, t) = E2(�ρ, t) + E†

1(�ρ, t), (3.5)

is the noise field added by the teleportation process. In
the ideal case of perfect entanglement of two EPR beams
at all frequencies Ω and spatial frequencies �q the terms
E2(�ρ, t) and E†

1(�ρ, t) are perfectly anticorrelated and their
quantum fluctuation cancel each other. This would cor-
respond to the perfect “point-to-point” in space and in-
stantaneous in time teleportation of the quantum state
of the input field with an arbitrary distribution in space
and time, Aout(�ρ, t) = Ain(�ρ, t). However such teleporta-
tion would require infinitely large energy of EPR beams.
Indeed, first one should achieve an infinite squeezing per
single coherence volume of an EPR beam, as in the single-
mode case. Additionally, since now we have broadband
multimode entanglement, one would need an infinite num-
ber of elementary coherence volumes in the EPR beams.
In practice teleportation will never be point-to-point in
space and instantaneous in time but always “on average”
within some spatial area and within some finite time in-
terval.

3.1 Continuous description and field statistics

By using equations (2.15) and (2.3), for the noise ampli-
tude given by equation (3.5), we obtain in the Fourier
domain

f(�q,Ω) = ξ∗(−�q,−Ω)c†1(−�q,−Ω)+ξ(�q,Ω)c2(�q,Ω), (3.6)

where
ξ(�q,Ω) = U(�q,Ω) − V ∗(−�q,−Ω), (3.7)

and the field operators

c1,2(�q,Ω) =
1√
2

(± a1(�q,Ω) + a2(�q,Ω)
)
, (3.8)

with the +(−) sign corresponding to 1(2), are unitary
superpositions of two independent vacuum fields on the
inputs of the OPAs. The fields c1,2(�q,Ω) are also in vac-
uum state. An immediate consequence of equations (2.4)
and (3.6) is that the noise operators have the commutation
relations of a classical field:[
f(�q,Ω), f †(�q ′, Ω′)

]
= (2π)3δ2(�q − �q ′)δ(Ω −Ω′)

× (|ξ(�q,Ω)|2 − |ξ(−�q,−Ω)|2) = 0,

[f(�q,Ω), f(�q ′, Ω′)] = 0, (3.9)



128 The European Physical Journal D

and thus can be considered as classical noise forces. Ac-
tually, as a consequence of (2.11), one has |V (�q,Ω)| =
|V (−�q,−Ω)|, and the function ξ(�q,Ω) in (3.6) is found in
the form

ξ(�q,Ω) = e−iφ(�q,Ω)
{
e−r(�q,Ω) cosψ(�q,Ω)

+ier(�q,Ω) sinψ(�q,Ω)
}
. (3.10)

In the spatio-temporal domain the noise field F (�ρ, t) is
given by

F (�ρ, t) =
1

(2π)3

∫
d�ρ0dt0

{
ξ∗(�ρ− �ρ0, t− t0)C

†
1(�ρ0, t0)

+ ξ(�ρ− �ρ0, t− t0)C2(�ρ0, t0)
}
. (3.11)

The statistics of this noise field are determined in the most
general form by the characteristic functional,

χ̃(λ, λ�) = 〈in| exp
{∫

d�ρ dt
(
λ(�ρ, t)F †(�ρ, t)

−λ�(�ρ, t)F (�ρ, t)
)}

|in〉. (3.12)

We calculate the functional (3.12) by normally order-
ing the field operators Cn(�ρ, t), C†

n(�ρ, t), where n = 1, 2,
in the exponent with the use of the standard transfor-
mation, exp(A + B) = expB expA exp([A,B]/2). Tak-
ing into account the free-field commutation relations,
analogous to (2.1), and the vacuum boundary condition
Cn(�ρ, t)|in〉 = 0, after some calculation we obtain:

χ̃(λ, λ�) = exp
{
−
∫
d�ρ d�ρ ′dt dt′λ(�ρ, t)λ�(�ρ ′, t′)

×G(�ρ− �ρ ′, t− t′)
}
, (3.13)

where the Fourier transform of the Green function G(�ρ, t)
reads

G(�q,Ω) = |ξ(�q,Ω)|2

= e−2r(�q,Ω) cos2 ψ(�q,Ω) + e2r(�q,Ω) sin2 ψ(�q,Ω).
(3.14)

It follows from equation (3.13) that the noise is Gaussian.
At any order, the spatio-temporal correlation functions
of the fields F (�ρ, t) and F †(�ρ, t) can be expressed in a
standard way via the second-order correlation functions

〈F (�ρ, t)F †(�ρ ′, t′)〉 = G(�ρ− �ρ ′, t− t′), (3.15)

〈F (�ρ, t)F (�ρ ′, t′)〉 = 0 . (3.16)

More precisely we have

〈
N∏

n, m=1

F (�ρn, tn)F †(�ρm, tm)

〉
=

lim
λ,λ�→0

{
N∏

n, m=1

∂

∂λ(�ρn, tn)
∂

∂λ�(�ρm, tm)

}
χ̃(λ, λ�)

=
∑
P

{
N∏

n, m=1

〈F (�ρn, tn)F †(�ρpn , tpn)〉
}
. (3.17)

The sum over P in equation (3.17) means the sum over
all possible permutations (p1, ..., pN ) of labels (1, ..., N).
Correlation functions containing a different number of cre-
ation and annihilation noise operators vanish, because of
equation (3.16). Notice that in the above the operator or-
dering is irrelevant because the noise operators commute.

Incidentally, a similar Green function describes the
photocurrent correlations in space-time by the homodyne
detection of multimode squeezed light [25].

When squeezing and entanglement are not present,
r(�q,Ω) = 0, the Green function is δ-correlated in space-
time,

G(�ρ, t) = δ(�ρ )δ(t). (3.18)

When entanglement is present over the spatial and tempo-
ral scales Sc, Tc and for ψ(0, 0) = 0, a positive δ-correlated
term similar to that in equation (3.18) is accompanied by
a negative term due to spatio-temporal anticorrelations
on the scales Sc, Tc. This anticorrelation permits the sup-
pression of the averaged noise field, as we shall discuss in
detail in the section below.

The spatial scales of the noise suppression are sensi-
tive to the rotation of squeezing ellipses in dependence
of the spatial frequency, shown in Figures 2a and 2b. In
the spatial-frequency domain this is evident from the be-
havior of the Green function (3.14), where the amplified
quadrature amplitudes of noise are present with the weight
∝ sin2 ψ(�q,Ω) �= sin2 ψ(0, 0) = 0. The misalignment of
squeezing ellipses increases with propagation along the
crystal and in free space and leads to the diffraction spread
of the coherence area. A properly inserted lens imaging
system compensates [12] this misalignment, as shown in
Figures 2c and 2d, and brings the size of the coherence
area Sc to its optimum value. If the squeezing, generated
by the OPAs, is effective for q ≤ qs, this value is evaluated
as Sc = (2π/qs)2.

In order to compensate diffraction, one can insert the
lenses directly into the EPR beams En, n = 1, 2. In
the general case this effect is described by phase shifts
quadratic in q, θn(q) = γnq

2 [13]:

En(�q,Ω) → Ẽn(�q,Ω) = En(�q,Ω)eiθn(q). (3.19)

By accounting for this phase correction in equations (3.4)
and (3.5) we find the corrected orientation angle
ψ(�q,Ω) → ψ̃(�q,Ω) = ψ(�q,Ω) + θ(q), where θ(q) =
(θ1(q) + θ2(q))/2. This angle should be substituted into
the Green function (3.14), G(�q,Ω) → G̃(�q,Ω). The best
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result that can be obtained with lenses is to set θ(q) =
−[d2ψ/dq2]q=0 q

2, as in Figures 2c and 2d. With this
choice ψ̃(�q, 0) ≈ 0 and G̃(q, 0) ≈ e−2r(q,0) over a broad
range of q. Physically speaking, lenses compensate the ef-
fect of diffraction on the spatial scale of entanglement. For
two entangled fields the lens arrangement can be asym-
metric, since only the net phase shift θ(q) is of importance.

3.2 Coarse-grained description and field quadrature
statistics

As mentioned above, the multimode teleportation will al-
ways be “on average” within some finite spatial area and
some finite time interval. Therefore, in order to quanti-
tatively characterize the performances of the scheme, we
have to introduce a coarse-grained description of the input
and output variables. We consider averaging of the field
variables over a pixel Sj of area S = ∆2 and over a time
window Ti of duration T :

Aout(j, i) =
1√
ST

∫
Sj

d�ρ

∫
Ti

dtAout(�ρ, t), (3.20)

with analogous definitions for the input field. The aver-
aged field operators obey standard commutation relations

[Aout(j, i), A
†
out(j

′, i′)] = δj,j′δi,i′ , (3.21)

and hence correspond to a discrete subset of field oscilla-
tors.

Next, we consider generic field quadrature operators of
the output and input field

Xϕ
out/in(j, i) = Aout/in(j, i)e−iϕ +A†

out/in(j, i)e
iϕ, (3.22)

Y ϕ
out/in(j, i) = −iAout/in(j, i)e−iϕ + iA†

out/in(j, i)e
iϕ.

(3.23)

These are observables which can be measured by means of
homodyne detection with a high efficiency CCD camera.
By using equation (3.4) we obtain,

Xϕ
out(j, i) = Xϕ

in(j, i) + Xϕ(j, i), (3.24)
Y ϕ

out(j, i) = Y ϕ
in (j, i) + Yϕ(j, i). (3.25)

where the excess noise added by the teleportation process
on the measured field quadrature is given by

Xϕ(j, i) =
1√
ST

∫
Sj

d�ρ

∫
Ti

dt
[
F (�ρ, t)e−iϕ

+F †(�ρ, t)eiϕ
]
, (3.26)

Yϕ(j, i) =
1√
ST

∫
Sj

d�ρ

∫
Ti

dt
{−i [F (�ρ, t)e−iϕ

−F †(�ρ, t)eiϕ
]}
. (3.27)

As follows from equations (3.13–3.15), these operators are
a linear combination of Gaussian stochastic variables, in-
dependent of the input. Hence the set

{Xϕ(j, i), Yϕ(j, i)}j,i , (3.28)

represent a set of classical Gaussian stochastic variables.
Here j = 1, . . .N , i = 1, . . .K, is a finite set of indices
labeling the pixels and the time intervals of interest. These
variables are independent of the input field and have zero
mean values. Their statistical properties are completely
described in terms of a characteristic function

χnoise ({µji, νji}) =〈
exp
{
i
∑
j,i

(
µjiXϕ(j, i) + νjiYϕ(j, i)

)}〉

= exp
{
− 1

2

∑
j,j′;i,i′

C(j, j′; i, i′)
(
µjiµj′i′ + νjiνj′i′

)}
,

(3.29)

where the covariance matrix is defined as

C (j, j′ ; i, i′) = 〈Xϕ(j, i)Xϕ(j′, i′)〉
= 〈Yϕ(j, i)Yϕ(j′, i′)〉. (3.30)

The covariance matrix elements are found with the use of
equations (3.26), (3.27), (3.15), (3.20), and (3.23). They
can be expressed in terms of the Green function in equa-
tion (3.13) as

C (j, j′ ; i, i′) = 2
∫

d�q B∆(�q )BT (Ω)

× cos [�q · (�ρj − �ρj′) −Ω(ti − ti′)]G̃(�q,Ω), (3.31)

where �ρj is the center of the pixel j, and ti is the center
of the ith time interval. Here G̃(�q,Ω) is the Green func-
tion (3.14) with the corrected value of the orientation an-
gle ψ̃(�q,Ω) = ψ(�q,Ω) + θ(�q ). In equation (3.31) functions
B∆(�q ) BT (Ω) arise from the coarse-graining operation.
For e.g. a square pixel of side ∆ they read,

B∆(�q ) =
∆2

4π2
sinc2

(
qx∆

2

)
sinc2

(
qy∆

2

)
∆→∞→ δ(�q ),

(3.32)

BT (Ω) =
T

2π
sinc2

(
ΩT

2

)
T→∞→ δ(Ω). (3.33)

Incidentally, we notice that the covariance matrix (3.31)
does not depend on the phase ϕ of the local oscillator,
used for the homodyne detection, so that the added noise
is the same for any quadrature component.

Ideal teleportation takes place when the Gaussian dis-
tribution of noise has a vanishing small width in all di-
rections of phase space, so that it approximates a multi-
variate Dirac δ-function. This can be realized if both the
time window T and the pixel size ∆ are large enough, so
that the functions (3.32) and (3.33) in the integral of equa-
tion (3.31) filter a band of temporal and spatial frequencies
well inside the squeezing bandwidths, where G(�q,Ω) � 1.
When the pixel side ∆ and the time window T are much
larger than the OPA coherence length lc, and the OPA
coherence time Tc, respectively, we obtain

lim
∆→∞ ,T→∞

C (j, j′ ; i, i′) = 2δj,j′δi,i′ exp(−2r(0, 0)).

(3.34)
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Fig. 4. Covariance matrix elements of the noise added by the teleportation scheme as a function of D = ∆/ld. The squeezing
parameter is exp[r(0, 0)] = 3. Figure (a) shows the diagonal element C(j, j) of the covariance matrix for observation without
(thin line) and with (bold line) a correcting lens. Figure (b) shows off-diagonal elements C(j, j′) with |�ρj − �ρj′ | = ∆ (lines 1),

and with |�ρj − �ρj′ | =
√

2∆ (lines 2). Bold and thin lines have the same meaning as on (a).

In addition, as in the single-mode case, a large degree of
EPR correlation (large squeezing parameter r), is required
in order to achieve a good quality teleportation.

For a broadband OPA, where the parametric crystal
length is on the order of millimeters, the coherence time is
of the order of femtoseconds to picoseconds, so that usual
detection time windows overcome by several order of mag-
nitudes the coherence time. Hence, in equation (3.31) it is
reasonable to assume the limit T � Tc, under which the
noise added by the teleportation scheme is uncorrelated
in time,

C (j, j′ ; i, i′) = 〈Yϕ(j, i)Yϕ(j′, i′)〉 = δi,i′C(j, j′). (3.35)

However, the same is not true for the spatial domain. For
example, for an OPA with a 3 mm long crystal, at λ =
0.712 µm, taking as a rough estimate for the coherence
length lc the diffraction spread ld at the crystal exit, we
arrive to

lc ∼ ld =
√
l/2k = 13 µm. (3.36)

Provided that the spatial extent in the transverse plane
where EPR correlations do exist is limited by the pump
spot size, choosing ∆ � lc would amount to integrating
over the whole beam cross-section and losing all spatial
information.

In Figure 4 we illustrate the role of the pixel size for
the noise added by the teleportation process. Precisely, we
plot our numerical calculations for some elements of the
covariance matrix in the limit T � Tc as a function of the
ratio of the pixel side to the diffraction length D = ∆/ld,
where ld is defined by equation (3.36). As our system has
an overall translational symmetry, the covariance matrix
elements C(j, j′) depend only on the relative distance and
on the orientation of pixels with respect to the difference
position vector (�ρj − �ρj′). In particular, all the diagonal
elements C(j, j) have the same value.

Figure 4a shows the diagonal element C(j, j) of the
covariance matrix. The wide and narrow solid lines cor-
respond to the observation with (bold lines) and with-
out (thin lines) diffraction phase shift compensation with
the use of a lens arrangement. In both cases the plot
for the diagonal element C(j, j) shows the classical limit
C(j, j) → 2 for small pixel size, when the contribution of

the high-frequency Fourier components of the noise field,
q � qc, remaining in the vacuum state, dominates. On
the other side, when the pixel size is of the same or-
der of magnitude as the coherence length, both the wide
and narrow lines rapidly approach the ∆ → ∞ limit of
equation (3.34), C(j, j) → 2 exp[−2r(0, 0)] (dashed line),
which corresponds to the single-mode quantum telepor-
tation limit. This behavior should be compared with the
covariance matrix of the noise in a classical teleportation
scheme, i.e. in the absence of the EPR correlations. Then
r(�q,Ω) = 0, Ccl(j, j′) = 2δj,j′ , and Ccl(j, j) = 2. In this
limit two units of vacuum noise are added at each pixel,
just as in the case of the single-mode teleportation [5].
Figure 4b shows some off-diagonal elements of the covari-
ance matrix as a function of ∆/ld. They show correlations
between the nearest neighbor pixels in a row or a col-
umn, |�ρj − �ρj′ | = ∆ (lines 1), and between the pixels on
a diagonal |�ρj − �ρj′ | =

√
2∆ (lines 2), of the detector ma-

trix. As can be seen from these plots, when the pixel side
is small compared to the coherence length, our telepor-
tation scheme not only adds noise on each pixel (as in
the single-mode scheme) but also introduces correlations
between pixels. The existence of spatial correlations over
distances on the order of the coherence length is typical of
the multimode squeezed light, and has been investigated
in detail e.g. in [25,26].

4 Fidelity of the holographic teleportation

Using equation (3.24) we can obtain the explicit relation
between the spatio-temporal correlation functions of the
field quadratures in the output and in the input,

〈δXϕ
out(j, i) δX

ϕ
out(j

′, i′)〉 = 〈δXϕ
in(j, i) δXϕ

in(j
′, i′)〉

+ C(j, j′; i, i′). (4.1)

We see that, since all elements C(j, j′) are small provided
∆ ≥ lc, the teleportation preserves the spatio-temporal
pixel correlation. The same holds also for the higher-order
correlation functions since the added noise is Gaussian and
independent from the input.
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This conclusion is based on the added noise power.
Some other criteria for the quantum teleportation were
suggested in the literature, see e.g. [27].

The quality of reconstruction of the quantum state
|Ψin〉 of the input field in the teleportation process is usu-
ally quantified via the fidelity parameter F . For simplicity
we consider here the fidelity of teleportation of a pure
quantum state, which is defined as

F = | 〈Ψin|Ψout〉 |2 . (4.2)

This definition works well for teleportation of a single de-
gree of freedom of the quantized field. But in our case
of quantum teleportation of a multimode light field, dis-
tributed in space and time, the definition (4.2) meets some
obvious difficulties that stem from the multimode nature
of the field. Let us for instance assume that the input state
to be teleported has no correlation in space and time (as
e.g. for a coherent image), and that our teleportation pro-
tocol does not add any correlations between spatial and/or
temporal modes (as it happens for a large enough detec-
tion time window and pixel side). In this case the global
fidelity of the teleportation protocol factorizes in the prod-
uct of the single-mode fidelities. Even if each mode is tele-
ported with almost perfect fidelity, close, but slightly less
than unity, the global fidelity in the limit of a large num-
ber of modes will be close to zero, and will always reduce
to zero for an infinite number of modes. For this reason, in
the case of quantum teleportation of a multimode field it
is important to identify the relevant set of degrees of free-
dom and to introduce the notion of the reduced fidelity for
this set of degrees of freedom, and of the average fidelity
per mode.

An alternative definition of fidelity can be given in
terms of the superposition of the Wigner functions de-
scribing the state in the input and in the output (see
e.g. [3]).

We can introduce the Wigner function of the output
field as a quasi-probability distribution in the multidimen-
sional space of the discrete set of real variables xji, yji,
(j = 1, N ; i = 1,K), that correspond in the Wigner rep-
resentation to orthogonal field quadratures measured over
jth pixel and ith time interval. It is defined as the Fourier
transform in the N ×K dimensional space of a character-
istic function:

W out ({xji, yji}) =
∫

dN×Kµ

(2π)N×K

∫
dN×Kν

(2π)N×K

× exp


−i

∑
i,j

[µjixji + νjiyji]


χout ({µji, νji}) , (4.3)

where the symmetrically ordered characteristic function is
defined by:

χout ({µji, νji}) =

〈
exp

{
i
∑
i,j

[µjiX
ϕ
out(j, i)

+νjiY
ϕ
out(j, i)]

}〉
, (4.4)

with analogous definitions for the input. By using the re-
lations (3.24) and (3.25) linking the quadrature operators
of the teleported field to those of the input, and the fact
that the excess noise operators are independent from the
input ones, we obtain

χout ({µji, νji}) =〈
exp

{
i
∑
i,j

[
µjiX

ϕ
in(j, i) + νjiY

ϕ
in (j, i)

]}〉

×
〈

exp

{
i
∑
i,j

[µjiX (j, i) + νjiY(j, i)]

}〉

= χin ({µji, νji})χnoise ({µji, νji}) , (4.5)

where χnoise ({µji, νji}) is the characteristic function of
the Gaussian distribution of the excess noise, given
by (3.29). Hence the Wigner function of the teleported
field is given by a convolution of the Wigner function of
the input field with a multivariate Gaussian distribution,
with zero mean and covariance matrix given by (3.31). An
analogous relation holds for other quasi-probability dis-
tributions in phase-space, that correspond to different or-
dering of operators (e.g. for antisymmetrical ordering, the
Husimi Q-function); however, since F , F † are commuting
operator, ordering is irrelevant for χnoise ({µji, νji}).

The fidelity parameter that quantifies the quality of
the teleportation process is thus given by

F = (4π)N×K

∫
dN×Kx

∫
dN×Ky

×W out ({xji, yji})W in ({xji, yji})
=

1
πN×K

∫
dN×Kµ

∫
dN×Kν

× χout ({µji, νji})χin ({−µji,−νji})
=

1
πN×K

∫
dN×Kµ

∫
dN×Kν

× |χin ({µji, νji})|2 χnoise ({µji, νji}) , (4.6)

where the last line has been obtained by using the rela-
tion (4.5) relating input and output characteristic func-
tions.

Notice that in the limit of no excess noise C(j, j′; i′i′) =
0, χnoise = 1, and we have

F =
1

πN×K

∫
dN×Kµ

∫
dN×Kν |χin ({µji, νji})|2

= Tr
{
ρ̂2
in

}
= 1 (4.7)

for a pure input state (ρ̂in = |Ψin〉〈Ψin| is the input
field density matrix). In general, however, excess noise
will be always present to some extent and F < 1. We
can explicitly calculate the fidelity for Gaussian input
states (e.g. squeezed states, coherent states, EPR beams),
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for which

χin ({µji, νji}) = exp
{
− 1

2

∑
j,j′;i,i′

[
V X(j, j′ ; i, i′)µjiµj′i′

+ V Y (j, j′ ; i, i′)νjiνj′i′
]}
, (4.8)

where we have assumed without loss of generality that

〈Xin(j, i)〉 = 〈Yin(j, i)〉 = 0 , (4.9)

since the teleportation process preserves the mean values,
and

〈Xin(j, i)Xin((j′, i′) = V X(j, j′ ; i, i′)〉 ,
〈Yin(j, i)Yin((j′, i′) = V Y (j, j′ ; i, i′)〉 , (4.10)

are the input covariance matrices. By using equation (4.6)
and standard properties of Gaussian integrals we easily
obtain

F =
1

det
[
V X(j, j′ ; i, i′) + 1

2C(j, j′; i, i′)
] 1

2

× 1

det
[
V Y (j, j′ ; i, i′) + 1

2C(j, j′; i, i′)
] 1

2
. (4.11)

In particular for an input multimode coherent state
V X(j, j′ ; i, i′) = V Y (j, j′ ; i, i′) = δj,j′δi,i′ , and

F =
1

det
[
δj,j′δi,i′ + 1

2C(j, j′; i, i′)
] . (4.12)

These results have to be compared with the results of a
classical teleportation protocol, that is, in the absence of
EPR correlations, where Ccl(j, j′; i, i′) = 2δj,j′δi,i′ . For a
coherent input, in the classical case we have

Fcl =
1

2N×K
. (4.13)

From the above formulas it should be clear the claim that
we made at the beginning of this section, that is, the global
fidelity may approach rapidly zero for large number of de-
grees of freedom, and hence loose any quantitative mean-
ing. A good strategy is to identify the relevant degrees of
freedom of the system. If for instance the state to be tele-
ported is the quantum state of coherent image, restricted
to an array of NA pixels, no one will be probably inter-
ested to the quality of teleportation of the vacuum state
of the region of space outside the image.

Since we assumed a plane-wave pump, our model is
translationally space and time invariant, and the number
of available pixels and time intervals is in principle infi-
nite. This kind of model describes well a realistic system,
provided that the pump spot size is much larger than the
amplifier coherence area and that the pump pulse dura-
tion is much longer than the amplifier coherence time [16].
Obviously, one has also to require that the beam whose
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Fig. 5. Reduced fidelity of quantum holographic teleportation
for patterns of 1, 2, and 4 pixels, shown on the top of the figure
(plots F1, F2, and F4 respectively), as a function of D = ∆/ld.
The squeezing parameter is exp[r(0, 0)] = 3.

state is to be teleported is well confined inside the region
where significant gain is available, both in space and time.

Let us assume to divide our system in two subsystems,
say A and B, where subsystem A corresponds to a subset
{j, i}A of pixels and of time intervals of interest for given
measurement, and subsystem B is made of the remaining
{j, i}B pixels and time intervals. By tracing out over the
degrees of freedom of subsystem B, the characteristic func-
tion describing the statistical properties of the subsystem
A alone is obtained as:

χA
in ({µji, νji}A) =

TrA


[TrB ρ̂in] exp


i
∑

{j,i}A

[µjiX
ϕ
in(j, i) + νjiY

ϕ
in (j, i)]






= χin ({µji, νji}A {µji = 0, νji = 0}B) , (4.14)

and similarly for the output. By repeating all the pas-
sages (4.5) and (4.6) that allowed us to calculate the fi-
delity, but for the reduced characteristic function, we eas-
ily conclude that the formulas (4.11) and (4.12) hold true
for the fidelity of the reduced set of degrees of freedom,
provided that the covariance matrices in those formulas
are the covariance matrices of the second-order moments
of operators on the pixels and time intervals of subsys-
tem A.

In Figure 5 we show the reduced fidelity dependence
on the pixel size and on the number of pixels for some
simple patterns of pixels, in the case of a coherent image
in the input. The observation, as in Figures 4a and 4b is
assumed to be performed within the same time window, so
that the dimension of the covariance matrix in our case is
given by the number of pixels in the pattern. This is very
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reasonable for a traveling-wave OPA, since in a realistic
configuration in order to obtain large gain a pulsed opera-
tion is required. Therefore, the detection time window will
be probably longer or of the same order as duration of the
pump pulse. Notice that the same is not necessarily true
for a cavity configuration, because the CW operation in
this case permits to resolve temporal degrees of freedom.

The shape of the patterns for 1, 2, and 4 pixels is shown
on the top of Figure 5. We plot our numerical calculations
of FA given by equation (4.11) for the degree of squeezing
exp[r(0, 0)] = 3, as a function of the ratio of the pixel side
to the diffraction length D = ∆/ld. For these patterns
only the diagonal covariance matrix elements C(j, j), and
those describing nearest neighbor correlations in a row, in
a column and in a diagonal are of importance. The wide
and narrow solid lines correspond to the observation with
(wide lines) and without (narrow lines) diffraction phase
shift compensation with the use of a lens arrangement.
For small pixel size, D � 1, all curves attain the clas-
sical limit FN → 0.5N . For large pixel size, D � 1, the
curves tend to the limit, imposed by the degree of squeez-
ing: FN → (1 + exp[−2r(0, 0)])−N = 0.9N . As seen from
Figure 5, the fidelity of teleportation decreases with the
number of pixels. This qualitatively means that the multi-
pixel observables, dependent on the correlations between
pixels, are more sensitive to the absence of entanglement
in the quantum channel than the observables for a single
pixel.

The effect of optimization of the spatial scales in our
teleportation protocol with the use of a lens arrangement
is significant for a pixel width ∆ ≈ lc. As shows Figure 5,
the optimization allows us to achieve the same value of
fidelity for the pixel size, smaller by factor (2...3) than in
absence of such optimization.

As it is clear from inspection of the curves in Figure 5,
the fidelity for N degrees of freedom scales with the Nth
power. A significant quantity to plot is hence the average
fidelity per pixel, that is

Fav = (FN )
1
N . (4.15)

Consider a single temporal degree of freedom K = 1. For
a large N = M ×M array of square pixels, the covariance
matrix becomes translationally invariant, and it can be
diagonalized by means of a discrete Fourier transforma-
tion. Let us consider periodic boundary conditions, and
introduce

λ(�q�n) =
∑
�j

C(�j, 0)e−i�q�n·�ρ�j . (4.16)

Here �j = (jx, jy), with jx,y an integer, is a 2D label of
the pixel position. The 2D wave vector of the eigenwave
is given by �q�n = (2π/M∆)�n, where �n = (nx, ny), with
nx,y an integer, and |nx,y| ≤ (M − 1)/2 (we take M odd
for simplicity). In terms of continuous Fourier transform
equation (4.16) reads,

λ(�q) =
∫
d�ρ



∑
�j

δ(�ρ− �ρ�j)


 C(�ρ, 0)e−i�q·�ρ, (4.17)
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Fig. 6. Average fidelity per pixel for the quantum holo-
graphic teleportation of a large number of pixels in a coherent
state as a function of D = ∆/ld. The squeezing parameter is
exp[r(0, 0)] = 3.

and is related to the convolution of the Fourier transforms
of the factors in the integrand. Here we use the relation

∫
d�ρ



∑
�j

δ(�ρ− �ρ�j)


 e−i�q·�ρ =

(
2π
∆

)2∑
�m

δ

(
�q − 2π

∆
�m

)
,

(4.18)
where �m = (mx,my), with mx,y integer. The Fourier
transform of C(�ρ, 0) is easily evaluated from (3.31). Af-
ter some calculation we obtain

λ(�q) = 2
∑
�m

sinc2

(
qx∆

2
− πmx

)

× sinc2

(
qy∆

2
− πmy

)
G̃

(
�q − 2π

∆
�m

)
. (4.19)

In the limit M → ∞, the average fidelity per pixel is found
in the form

Fav =
∏
�n

(
1 +

1
2
λ(�q�n)

)−1/N

= exp


−

(
∆

2π

)2 ∫
|qx,y|≤π/∆

d�q ln
(

1 +
1
2
λ(�q)

)
 .

(4.20)

Figure 6 shows the behavior of the average fidelity per
pixel for quantum teleportation of a large array of pixels
in a coherent state.

5 Conclusions

In this paper we have provided a detailed analysis of
the quantum fluctuations in the holographic teleportation
technique for optical images proposed in [11]. A funda-
mental result of this treatment is the quantitative evalu-
ation of the fidelity of the quantum state transfer. This
was obtained, first all, by deriving the statistics of the
excess noise from a a characteristic functional, both in
a continuous and in a coarse-grained description of the
spatio-temporal degrees of freedom of the optical field.
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As a second step, we calculated the Wigner function of
the teleported field from that of the input field, which
in turns enabled us to derive an explicit formula for the
fidelity of the multimode teleportation process. Such a fi-
delity depends on the number and choice of the image
elements that one teleports in parallel.

On the one side, we find that an optimal fidelity can be
reached only when the transverse size of the image pixels
to be teleported is not smaller than the coherence length of
the EPR entangled beams used in the protocol. This limit
on the spatial resolution of the scheme is imposed by the
limited spatial bandwidth of emission of the parametric
amplification process used to generate the EPR beams.
The limitations on the spatial resolution of the device were
already analysed in [11], where criteria for minimizing the
excess noise were formulated. Here we derive the same
limits in the context of a quantitative evaluation of the
fidelity.

On the other side, we show that the fidelity of the mul-
timode teleportation protocol is more sensitive to the lack
of entanglement in the quantum channel, and to any other
imperfection of the scheme, than that of the single-mode
teleportation. Actually, the fidelity of the quantum state
transfer of N pixels scales as the Nth power. It is therefore
important to define a reduced fidelity of teleportation, re-
lated to the essential degrees of freedom to be teleported
that can be defined, for example, by restricting the level
of resolution of the input image in case of image teleporta-
tion. By properly matching the spatial bandwidth of the
image to be teleported to that of the EPR beams, and
by properly optimizing the scheme, we show that such a
reduced fidelity can approach values very close to unity in
our scheme.

The authors thank Denis Vasil’ev for assistance in the eval-
uation of fidelity in Section 4 of the paper. This work was
supported by the Network QUANTIM (IST-2000-26019) of
the European Union, by the INTAS under Project 2001-2097,
and by the Russian Foundation for Basic Research under
Project 03-02-16035.

Appendix A: Homodyne detection with spatial
resolution

In this appendix we shall discuss the validity of equa-
tion (3.2) for the photocurrent density operators in the
balanced homodyne detection scheme with spatial reso-
lution. For definiteness we shall consider the homodyne
detection of the X quadrature component. The results
for the conjugate component are obtained in the similar
way. In Figure 7 we present in detail the schematic of
the “point-by-point” balanced homodyne detection with
a photodetector Dx. To achieve the spatial resolution,
the pixels of the CCD matrices are assumed to be much
smaller than the coherence area Sc of the EPR beams.
We shall discuss the properties of the quantum operator
for the surface density of the photocurrent and show, that
the definition (3.2) of this observable is in agreement with

Fig. 7. Schematic of balanced homodyne detection with spa-
tial resolution.

the standard description of photodetection with resolution
in space and time, based on the Glauber field correlation
functions [28]. The output signal of the balanced homo-
dyne detector Dx is given by

Ix(�ρ, t) = I(l)
x (�ρ, t) − I(r)

x (�ρ, t), (A.1)

where I(l)
x (�ρ, t) and I(r)

x (�ρ, t) are the surface photocurrent
densities, measured by the left and right CCD matrices.
The local oscillator plane wave LOx with complex am-
plitude B(H)

x is classical and strong, |B(H)
x | � |Bx(�ρ, t)|,

where Bx(�ρ, t) is the input field of the detector. In this
limit the quantum operator for the difference photocur-
rent surface density is introduced in analogy to the ear-
lier investigated spatially single-mode case, see [23] and in
more general context [24]. The classical field strength is
replaced by the quantum field operator Bx(�ρ, t) in the dif-
ference surface power of beatings between the object and
the local oscillator waves:

Ix(�ρ, t) = B(H)
x

∗
Bx(�ρ, t) + h.c. (A.2)

The quantum efficiency of the CCD matrices for simplicity
is assumed to be equal to unity and the additional quan-
tum noise due to the light losses in detectors is neglected.
The beam splitter BS3 is described by the matrix similar
to (2.16).

Let us show, that the operator (A.2) is in agreement
with the Glauber photodetection theory [28] and, in par-
ticular, describes correctly the shot noise of photodetec-
tion in space and time. In standard photodetection theory
the second-order correlation function of the photocurrent
density is related to the fourth-order correlation function
of the field amplitudes. In our case of differenced photode-
tection this relation reads,

〈
1
2
{Ix(�ρ, t), Ix(�ρ ′, t′)}+

〉
= 〈Φ(l)

x (�ρ, t) + Φ(r)
x (�ρ, t)〉δ(�ρ− �ρ ′)δ(t− t′)

+
〈
TN

{(
Φ(l)

x (�ρ, t) − Φ(r)
x (�ρ, t)

)

×
(
Φ(l)

x (�ρ ′, t′) − Φ(r)
x (�ρ ′, t′)

)}〉
. (A.3)
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Here the quantities

Φ(l)
x (�ρ, t) =

1
2

(
B(H)

x +Bx(�ρ, t)
)†(

B(H)
x +Bx(�ρ, t)

)
,

Φ(r)
x (�ρ, t) =

1
2

(
−B(H)

x +Bx(�ρ, t)
)†(

−B(H)
x +Bx(�ρ, t)

)
,

(A.4)

are the surface densities of the photon flux on the left and
right CCD matrices, and {..., ...}+ stands for the anticom-
mutator. The TN ordering of the field operators in (A.3)
means: (i) the normal ordering, and (ii) the time ordering
of the positive-frequency (annihilation) operators, such
that the time argument grows up from right to left, and
the inverse time ordering of the negative-frequency (cre-
ation) field operators.

In the limit of a strong local oscillator we can assume
in (A.3) the following approximation:

Φ(l)
x (�ρ, t) − Φ(r)

x (�ρ, t) ≈ B(H)
x

∗
Bx(�ρ, t) + h.c. (A.5)

Consider now the same second-order symmetrized corre-
lation function of the output photocurrents [see the left
side of (A.3)], directly substituting into it the introduced
above surface photocurrent density operator (A.2). Bring-
ing the field operators to the TN order with the use of the
commutation relation similar to (2.1), we arrive at

〈
1
2
{Ix(�ρ, t), Ix(�ρ ′, t′)}+

〉
= |B(H)∗

x |2δ(�ρ− �ρ ′)δ(t− t′)

+
〈
TN

{(
B(H)∗

x Bx(�ρ, t)+h.c.
)

×
(
B(H)

x

∗
Bx(�ρ ′, t′) + h.c.

)}〉
. (A.6)

This expression agrees with the Glauber correlation func-
tion (A.3), approximated with the use of (A.5). The delta-
like contribution describes the shot noise of photodetec-
tion in space and time. In Section 3 we apply the difference
photocurrent surface density operator (A.2) to analysis of
our teleportation scheme.
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